CP violation studies in $B ightarrow D^{(*)} K^{(*)}$ in BaBar and Belle

Maria Różańska^a

H. Niewodniczański Institute of Nuclear Physics of Polish Academy of Science, ul. Radzikowskiego 152, Cracow, Poland

Received: 28 October 2003 / Accepted: 6 January 2004 / Published Online: 6 February 2004 – © Springer-Verlag / Società Italiana di Fisica 2004

Abstract. BaBar and Belle results on $B \to D^{(*)}K^{(*)}$ decays are reviewed in the context of constraining the ϕ_3 angle in the Unitarity Triangle.

PACS. 13.25.Hw - 12.15.Hh - 11.30.Er - 14.40.Nd

1 Introduction

CP violation (CPV) studies in the B-sector are targeted at measurements of the three angles of the Unitarity Triangle. The angle $\phi_3(\gamma) \equiv arg(V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ can be observed through interference between $b \rightarrow c$ and $b \rightarrow u$ transitions. Good processes for such studies are strangeness-changing B decays to neutral charmed mesons:

$$B \to DX_s.$$
 (1)

D stands for D^0 or \overline{D}^0 as well as their excited states and X_s denotes a system of light mesons with $S = \pm 1$. Example diagrams for such decays are shown in Fig. 1. The decays $B^- \to D^0 K^-$ are driven by $b \to c$ transitions and $B^- \to \overline{D}^0 K^-$ by $b \to u$ transitions ¹. When D^0 and \overline{D}^0 decay to a common final state, the two amplitudes (denoted $A_{b\to c}$ and $A_{b\to u}$) interfere, leading to direct CPV. Processes of this type, being free from penguin contributions, provide a theoretically clean environment to extract ϕ_3 .

The first idea of measuring ϕ_3 in decays of the type (1) came from Gronau, London and Wyler (GLW) [1]. In this method interference between the two amplitudes should be observed in $B \to D_{\pm}K$ decay modes, where $D_{\pm} \equiv (D^0 \pm \bar{D}^0)/\sqrt{2}$ denotes D meson CP eigenstates. In such case ϕ_3 can be extracted from CP asymmetries and ratios of decay rates using the following relations [2]:

$$\mathcal{A}_{\pm} \equiv \frac{\mathcal{B}(B^- \to D_{\pm}K^-) - \mathcal{B}(B^+ \to D_{\pm}K^+)}{\mathcal{B}(B^- \to D_{\pm}K^-) + \mathcal{B}(B^+ \to D_{\pm}K^+)} = \frac{\pm 2r\sin\delta\sin\phi_3}{1 + r^2 \pm 2r\cos\delta\cos\phi_3} \tag{2}$$

$$\mathcal{R}_{\pm} \equiv \frac{2(\mathcal{B}(B^- \to D_{\pm}K^-) + \mathcal{B}(B^+ \to D_{\pm}K^+))}{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to \bar{D}^0K^+)}$$
$$= 1 + r^2 \pm 2r\cos\delta\cos\phi_3. \tag{3}$$

^a Supported by the by the KBN grant No. 2P03B01324.

¹ Charge conjugation is implied throughout the paper unless explicitly stated otherwise.

Fig. 1. Diagrams corresponding to $A_{b\to c}$ (a) and $A_{b\to u}$ (b) amplitudes

In the above equations δ is the relative strong phase of the interfering amplitudes and $r \equiv |A_{b\to u}/A_{b\to c}|$. The observables \mathcal{A}_{\pm} and \mathcal{R}_{\pm} contain information sufficient to extract δ and r, and thus ϕ_3 can be measured without hadronic uncertainties. Sensitivity of such measurements, however, depends on the ratio r which for decays with the biggest branching fractions tends to be small. (for $B^- \to DK^-$ the expected value of r is $\sim 0.1 \div 0.2$). This is mainly due to the color suppression of the $A_{b\to u}$ amplitude. Many subsequent approaches, which to a large extent can be considered as variants and extensions of the GLW method, try to overcome this difficulty. Altogether they offer a rich experimental program exploiting a variety of final states and observables in decays of the type (1).

2 Experimental results

While a large number of methods have been proposed, all of them present a challenge for experiments. Among the main problems one should mention are: small product branching fractions (e.g. D^0 decays to CP-eigenstates, f_{CP} , constitute ~ 1% of the total width leading to $\mathcal{B}(B^- \to D^0 K^-) \times \mathcal{B}(D^0 \to f_{CP}) \sim 10^{-6})$; observables which weakly depend on interference effects or are difficult to measure and background from much more abundant non-strange modes like $B \to D\pi$. (e.g. one estimates $\frac{\mathcal{B}(B^- \to D^0 K^-)}{\mathcal{B}(B^- \to D^0 \pi^-)} \approx 0.075$ from the value of the Cabibbo angle). Consequently, all the methods require a huge data sample (typically of the order of 500 M BB's or more) and high performance of a multipurpose detector. Experiments at B-factories are potentially a good place to perform such measurements. In particular they provide good kinematical resolution and K/π separation, which are essential for these studies. With the present luminosities the data sample of 500 fb⁻¹ can be collected after a few years of running. The results reported here are based on data samples typically of ≈ 80 fb⁻¹ and represent preliminary studies towards the ϕ_3 measurement.

2.1 $B^- \rightarrow DK^{(*)-}$

 $B^- \to D^0 K^-$ decays have been observed by experiments running at $\Upsilon(4S)$. Recent measurements of the ratios of branching fractions of Cabibbo-suppressed to Cabibbofavored modes $R = \frac{\mathcal{B}(B^- \to D^0 K^-)}{\mathcal{B}(B^- \to D^0 \pi^-)}$ are summarized in Table 1. The results are consistent with the Cabibbo suppression mentioned above. Belle and BaBar have also studied $B^- \to D_{\pm} K^-$ modes with data samples of 78 fb⁻¹ and 82 fb⁻¹ respectively [4], [5]. Both experiments found signals in the channels with D decaying to CP-even eigenstates: $D_+ \to K^+ K^-$, $\pi^+ \pi^-$. Belle also observed CP-odd modes: $D_- \to K_s^0 \pi^0$, $K_s^0 \phi$, $K_s^0 \eta$, $K_s^0 \eta'$. Figures 2 and 3 present ΔE distributions for these channels (ΔE is a difference between reconstructed B-meson energy and its nominal value in the $\Upsilon(4S)$ rest frame).

Results on \mathcal{A}_{\pm} and \mathcal{R}_{\pm} are summarized in Table 2. Measurement errors preclude direct determination of ϕ_3 from these data but meaningful constraints should be feasible in the near future by means of inequalities resulting from (2, 3): $\sin^2 \phi_3 \leq \mathcal{R}_{\pm}, r \geq 1/4 | \mathcal{R}_+ - \mathcal{R}_- | [2].$

Decay modes with excited kaons, such as $B^- \to DK^{*-}$ can be used in a similar way to constrain ϕ_3 . Belle studied these channels with 88 fb⁻¹ of data [7]. K^{*-} was reconstructed from $K^{*-} \to K_s^0 \pi^-, K_s^0 \to \pi^+ \pi^-$ decays. The measured branching fraction $\mathcal{B} = (5.2 \pm 0.5(stat) \pm 0.6(sys)) \times 10^{-4}$ is consistent with earlier CLEO result based on much lower statistics [6]. The performed analysis showed no indication of a non-resonant $D^0 K_s^0 \pi^-$ invariant mass and K^{*-} helicity angle are shown in Fig. 4 a and 4 b respectively. Results are consistent with Monte Carlo simulations of pure $B^- \to D^0 K^{*-}$ decay.

With this data sample Belle observed for the first time $B^- \rightarrow D_{\pm}K^{*-}$ decays (see Fig. 5). The significance is 4.3σ for CP-even $(K^+K^-, \pi^+\pi^-)$ and 2.4σ for CP-odd $(K_s^0\pi^0, K_s^0\phi, K_s^0\omega)$ states. Event yields are substantially lower than for $B^- \rightarrow D_{\pm}K^-$, which is due to the limited reconstruction efficiency of K^{*-} . Preliminary measurements of CP asymmetries are presented in Table 2.

2.2 $B^- \rightarrow D^* K^{*-}$

Decay modes into two vector mesons can be also used to measure ϕ_3 [9]. An interesting feature of these channels

Fig. 2. ΔE distributions of $B^{\pm} \to D_+ K^{\pm}$ from BaBar. The kaon mass is assumed for the prompt hadron. Contributions from $B^{\pm} \to D_+ \pi^{\pm}$ are seen at $\Delta E \approx 0.05 \text{ GeV}$

Fig. 3. ΔE distributions of $B^{\pm} \to D_{\pm}K^{\pm}$ from Belle. The pion mass is assumed for the prompt hadron. Contributions from $B^{\pm} \to D_{\pm}\pi^{\pm}$ are seen at $\Delta E = 0$

Fig. 4. Yields for $B^{\pm} \to D^0 K^{*\pm}$ from Belle in bins of $K_s^0 \pi^$ invariant mass (a) and in the bins of $\cos \theta_{hel}$ (b). The hatched histograms are Monte Carlo simulations of $B^- \to D^0 K^{*-}$

Fig. 5. ΔE distributions of $B^{\pm} \to D_+ K^{*\pm}$ (**a**) and $B^{\pm} \to D_- K^{*\pm}$ (**b**) from Belle

Table 1. Measurements of $R = \frac{\mathcal{B}(B^- \to D^0 K^-)}{\mathcal{B}(B^- \to D^0 \pi^-)}$ The first error is statistical and the is second systematic

experiment	R	data sample
CLEO [3]	$(9.9\pm1.3\pm0.7)\%$	$15.3 {\rm ~fb^{-1}}$
BaBar $[4]$	$(8.31\pm 0.25\pm 0.2)\%$	$56 {\rm ~fb^{-1}}$
Belle $[5]$	$(7.7\pm0.5\pm0.6)\%$	$79 { m ~fb^{-1}}$

Table 2. Results on \mathcal{A}_{\pm} and \mathcal{R}_{\pm} . The first error is statistical and the is second systematic

mode	\mathcal{A}_{\pm}	\mathcal{R}_{\pm}	exp.
D_+K^-	$0.17 \pm 0.23 \pm 0.08$	$1.06 \pm 0.26 \pm 0.17$	BaBar
D_+K^-	$0.06 \pm 0.19 \pm 0.04$	$1.21 \pm 0.25 \pm 0.14$	Belle
DK^-	$-0.19 \pm 0.17 \pm 0.05$	$1.41 \pm 0.27 \pm 0.15$	Belle
$D_{+}K^{*-}$	$-0.02 \pm 0.33 \pm 0.07$	-	Belle
$D_{-}K^{*-}$	$0.19 \pm 0.50 \pm 0.04$	-	Belle

is the presence of additional observables resulting from interference between helicity amplitudes.

BaBar has recently released results on the $B^- \rightarrow D^{*0}K^{*-}$ decays based on data sample of 79 fb⁻¹ [8]. The measured branching fraction of $(8.3 \pm 1.1(stat) \pm 1.0(sys)) \times 10^{-4}$ agrees well with the earlier CLEO result [6]. BaBar also presented the first measurement of the fraction of longitudinal polarization $\Gamma_L/\Gamma = 0.86 \pm 0.06(stat) \pm 0.03(sys)$ in these decays.

2.3 $ar{B}^0 ightarrow Dar{K}^{(*)0}$

Neutral B decays of the type (1) are of special interest. In this case the amplitude $A_{b\to c}$ is also color suppressed. This leads to decay rates as low as $\approx 10^{-5}$, but at the same time the larger amplitude ratio $r \sim 0.4$ augments interference effects ([10]). The flavor of B^0 can be tagged in the modes with excited kaons from $\bar{K}^{*0} \to K^- \pi^+$ decay products. The ϕ_3 can be constrained from decays of this type in a similar way as from charged B decays [11]. When the final states contain K_s^0 , $B^0 - \bar{B}^0$ mixing leads to time-dependent asymmetries, which are sensitive to a combination of mixing and decay "phases ([10], [12])." Belle, using a data sample of 78 fb^{-1} , observed for the first time the decays $\bar{B}^0 \to D^0 \bar{K}^0$ and $\bar{B}^0 \to D^0 \bar{K}^{*0}$ (Fig. 6) with the branching fractions $\mathcal{B}(\bar{B}^0 \to D^0 \bar{K}^0) = (5.0^{+1.3}_{-1.2}(stat) \pm 0.6(sys)) \times 10^{-5}$ and $\mathcal{B}(\bar{B}^0 \to D^0 \bar{K}^{*0}) =$ $(4.8^{+1.1}_{-1.0}(stat) \pm 0.5(sys)) \times 10^{-5}$ [13]. Also in this case no indication of non-resonant contribution to $\bar{B}^0 \to D^0 \bar{K}^{*0}$ was found.

3 Summary

Belle and BaBar continue a steady progress in the studies of the decays of the type (1). Among the most important results one should mention measurements of charged B decays to D CP-eigenstates which provide the complete

Fig. 6. ΔE distributions for $\bar{B}^0 \to D^0 \bar{K}^{(*)0}$ from Belle. The *hatched histograms* show the distributions of events in D^0 sideband regions

set of observables needed in the GLW method and observation of the color suppressed $\bar{B}^0 \rightarrow D^0 \bar{K}^{(*)0}$ decays. With new theoretical approaches and the excellent performance of KEKB and PEPII, one can hope for meaningful constraints on ϕ_3 in the near future.² This also gives good prospects for ϕ_3 measurements at B-factories with upgraded luminosities.

References

- M. Gronau and D. Wyler: Phys. Lett. B 265, 172 (1991);
 M. Gronau and D. London: Phys. Lett. B 253, 483 (1991)
- M. Gronau: Phys. Rev. D 58, 037301 (1998); M. Gronau: Phys. Lett. B 557, 198 (2003)
- A. Bornheim et al., (CLEO Collab.): Phys. Rev. D 68, 052002 (2003)
- B. Aubert et al., (BaBar Collab.): hep-ex/0207087 and talk presented by M. John at Flavor Physics & CP Violation Conference, 3-6 June 2003, Paris
- S. Swain et al., (Belle Collab.): Phys. Rev. D 68, 051101 (2003)
- R. Mahapatra et al., (CLEO Collab.): Phys. Rev. Lett. 88, 101803 (2002)
- 7. S. Swain et al., (Belle Collab.): hep-ex/0307074
- 8. B. Aubert et al., (BaBar Collab.): hep-ex/0308057
- N. Sinha and R. Sinha: Phys. Rev. Lett. 80, 3706 (1998);
 D. London, N. Sinha, and R. Sinha: hep-ph/0304230
- 10. B. Kayser and D. London: Phys. Rev. D 61, 116013 (2000)
- 11. I. Dunietz: Phys. Lett. B 270, 75 (1991)
- R. Fleischer: Phys. Lett. B 562, 234 (2003); R. Fleischer: Nucl. Phys. B 569, 321 (2003)
- P. Krokovny et al., (Belle Collab.): Phys. Rev. Lett. 90, 141802 (2003)
- 14. K. Abe et al., Belle Collab.): hep-ex/0308043
- A. Giri, Y. Grossman, A. Soffer, and J. Zupan: Phys. Rev. D 68, 054018 (2003)

² After this conference Belle presented 90% confidence interval for the ϕ_3 : $61^o \leq \phi_3 \leq 142^o$ [14]. The result was obtained with 140 fb⁻¹ of data using a novel method which employs interference between three-body D^0 and \bar{D}^0 decays [15].